
Week 4
Over-constrained systems

• Displacement-stiffness method
• Thermal effects
• Saint-Venant’s principle
• Stress concentration
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Statically indeterminate 
bars

Statically indeterminate system: A system for 
which the equilibrium equations (expressed 
in terms of stresses) are insufficient to 
determine the reactions. 
Some of the loads or supports are redundant 
to maintain equilibrium
There are fewer (non trivial) equations of 
static equilibrium available than there are 
unknown reactions.
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Approach to solve statically indeterminate 
systems
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Equilibrium: Make use of the fact that equilibrium 
conditions have to be assured both globally and locally

Constitutive: Hooke’s law must be obeyed by all materials 
of the system.

Kinematic and compatibility: The solution must be 
compatible with the geometric restraints at the boundary as 
well as among deformed parts of the body



The Displacement 
Stiffness Method

In the displacement method, one 
postulates a specific displacement
and calculates the forces that are 
required to obtain that displacement. 
Using equilibrium at each node gives 
us the reaction forces
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The Displacement 
Stiffness Method
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1. Determine the number of redundants and identify the nodes

2. Separate the structure in sections with nodes on each side

3. Postulate a nodal displacement ui for each node i and calculate for each node 
the force that must be acting fi

4. Calculate the local stiffness matrix for each segment

5. Calculate the global stiffness matrix from the local matrices 

6. Enter the boundary conditions and known loads

7. Solve for the remaining unknowns



Example

A polystyrene bar consisting of two cylindrical portions AB 
and BC is restrained at both ends and supports two 26 kN
loads as shown in Fig- ure 2.35. Knowing that E is 3.1 GPa, 
determine the reactions at A and C

Given: Dimensions of and loading on composite polystyrene 
bar.

Find: Reactions and normal stresses.

Assume: Hooke’s law applies. Neglect weight of polystyrene 
cylinders. 
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M
E-

23
1B

 / 
ST

R
U

C
TU

R
AL

 M
EC

H
AN

IC
S

FO
R

 S
V

G
eo

rg
 F

an
tn

er
 

1

Gov . prine : D .

S . METHOD k = ALI
son.

i÷÷÷÷: Ki:L
B.C

.

: Cla ' O U
@
= o FB =P = 52 kN

E÷H÷÷÷÷H ''÷::÷÷.
.



M
E-

23
1B

 / 
ST

R
U

C
TU

R
AL

 M
EC

H
AN

IC
S

FO
R

 S
V

G
eo

rg
 F

an
tn

er
 

1

÷÷÷÷÷÷÷÷ii÷÷÷i .
LAB

=

IT ( CG . co

's
)
Z

ke = Abc E
OT

- 3 " -
109 Pa = 4. is .

'

Im

←
= 1.52 -

cot Fm

⇐÷÷÷÷÷÷÷÷÷ :: :: "÷:D



Thermal effects 7

Materials expand with an increase in temperature: this is called a thermal strain

α is the coefficient of (linear) thermal expansion. It has a dimension of 
(mm/mm)/°C or °C-1

If the material body is constrained, the thermal strain will result in a thermal 
stress:

"T = ↵(T � T0) = ↵�T

�T = E↵(�T )

Thermal stresses and strains can be super-
positioned with normal stresses and strains

44=14*5



Stress concentration



Saint-Venant’s principle
• Forces in reality are rarely distributed 

uniformly across their surface of action
• Saint-Venant’s Principle states that the 

manner of force application only plays a role 
near the point of force application

• For a bar loaded with a point load we can 
show that the normal stresses are nearly 
uniform on a surface whose distance from 
the applied force is the same as the width of 
the body.
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Stress concentration 10

§ Stress concentration can be thought of in similar terms as the flow speed in a 
fluid when it get’s to an area with reduced cross section

The analogy to fluid flow rates

§ Stone with water flowing around is analogue to a bar with a hole in it

§ water flowing between two stones is analog to a bar with two 
notches.
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Stress concentration
The analogy to flow

11

§ Picture that a fluid has to flow through 
your structure. 

§ In the areas where you have an 
increase in fluid flow velocity you have 
a positive stress concentration (local 
increase in stress). 

§ In areas where you have a decreased 
fluid flow velocity you have a negative 
stress concentration (a local decrease 
in stress). 

Ten



Stress concentration 12

§ From Saint-Venant’s principle we also know that the 
maximum stress in a structure and its relation to the 
average stress is a function of geometry.

�max = K�ave = K
P

A

n K is the stress concentration factor and can be 
determined experimentally or numerically

n K can be looked up in graphs or tables for 
different geometries (be careful how the σave is 
defined for that graph or table)

-TEETHE



�max = K · �nom = K · P

c · t

Stress concentration 
around a hole



Stress concentration at a 
change in cross-section
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Stress concentration
Example 2.9

15

§ A 6 mm × 75 mm plate, 600 mm long, has a 
circular hole of 25 mm diameter located at its 
center. Find the axial tensile force that can 
be applied to this plate in the longitudinal 
direction without exceeding an allowable 
stress of 220 MPa. How does the presence 
of the hole affect the strength of the plate? 

§ Given: Dimensions of plate, limiting normal 
stress.
Find: Allowable axial load that can be applied 
to plate. Assume: Hole is only feature that 
causes a stress concentration. 
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Spring Axially 
loaded bar

Hooke’s 
Law

Spring 
constant

Another use of treatment of bodies like 
springs: Strain Energy.

16

§ From the axially loaded bar we have seen the communality of the load 
extension curve to the basic force extension curve of a spring

§ We can now also apply this communality to energy stored in a stretched 
spring or bar

P =
AE

L
· �F = k ·�x

k =
AE

L
k



Strain Energy in one 
Dimension

17

§ We know from Hooke’s law that a solid material reacts to a load in a similar 
way as a linear spring. The energy stored by a compressed spring is:

§ In analogy, the strain energy stored in an elastic solid (strain energy per unit 
volume) is then: 



Strain energy in one 
dimension

18

§ Area under the stress-strain curve: strain energy density (U0)
§ Area “above” the stress-strain curve: complementary energy density (U0’)

mW
.



Strain Energy in one Dimension: 
Thermal strain energy

19

§ Thermal strains offset the stress-strain curve along the strain axis



The three governing physical 
principles for structural mechanics
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Equilibrium: relates external 
forces, reactions, internal 
forces and stresses

Newton 2: relates external forces to reactions
Method of sections: relates external forces & 
reactions to internal forces
Newton 2 & method of sections: relate internal 
forces to stresses

Constitutive laws: relate stresses to strains

Compatibility considerations: relates strains to 
displacements or deflections (i.e. kinematics)



Review: the three 
equations

In structural mechanics, we (always) rely on 
these 3 equations:

Equilibrium equation: ensures that all forces are 
in equilibrium

Constitutive equation: Relates two quantities with 
materials specific properties.

Kinematic Equation: relates strain (ε) to 
displacement (u):

21

"(x) =
du(x)

dx

E =
�

"

dN(x)

dx
+

X

i

Pi�(x� xi) +BxA(x) = 0



Review: stress strain in 1D
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Learning objectives of chapter 2

Calculate normal and shear stresses and strains in bars (“bar in tension formula”Bars

Understand the concept of the displacement u(x) and how we derived the strain from thisDisplacement

Know Hooke’s law and how and when it appliesHooke

Understand the method of sections and be able to solve structures with trusses in 2DSections

Know what kind of forces can act on structures (interneal, external, distributed, body, etc…)Forces

Understand and apply superposition principleSupposition



Review: stress strain in 1D
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Learning objectives of chapter 2

Know and apply the kinematic, constitutive, and equilibrium equations3 equations

Solve statically indeterminate systems with the displacement stiffness methodIndeterminate 
Systems

Know and solve problems involving thermal stressesThermal

Understand Saint Venant’s principle and explain why it is importantSt.Venant

Know and apply stress concentrationsConcentration

Calculate strain EnergyEnergy


